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Abstract. The Liquid Argon Time Projection Chamber (LArTPC) technology is a leading 
candidate for a 100-kiloton class detector for electron neutrino appearance in a long-baseline 
muon-neutrino beam and for nucleon decay within the stable Argon nucleus, both with 
excellent efficiency and background rejection. The US has taken its first steps toward 
development of the technology by constructing and operating small LArTPC detectors, the 
latest being the ¼-ton detector of the ArgoNeuT collaboration. In a recent 6-month run in the 
low-energy configuration of the NuMI neutrino beam at Fermilab, the collaboration recorded a 
large sample of neutrino events. This paper reports on the characteristics of that data, the 
preliminary steps to reduce the data to a sample of neutrino-induced events, and a description 
of an event consistent with a charged current quasi-elastic electron-neutrino interaction. 

1.  Introduction 
The Liquid Argon Time Projection Chamber (LArTPC) technology developed within the context of 
the ambitious ICARUS project [1] has not as yet convincingly demonstrated (at least in the US) that 
the technology could fulfill its promise to provide excellent efficiency and background rejection for 
neutrino and proton decay physics at a reasonable cost. Over the last 5-6 years has there been a 
growing community of physicists and engineers who felt that with a staged approach [2] a convincing 
case could be made for the construction of a large detector [3] in the U.S. After two groups 

 
Figure 1. ArgoNeuT detector in its cryostat 
with the cathode on the left, wire planes on the 
right. The signal cables terminate on the bias 
voltage distribution cards. 

 

 

 
Figure 2. ArgoNeuT LAr-containment box, RF-
shielding box, and cryogenic purification system, 
between the MINOS and MINERVA detectors. 

 



 
 
 
 
 
 

successfully tested small LArTPC prototypes [4] the ArgoNeuT collaboration proposed Fermilab 
T962 [5], a joint NSF and DOE supported R&D project to build and operate a 170 liter (active 
volume) LArTPC detector, as shown in figure 1, and conduct a program of neutrino cross-section 
measurements, utilizing Fermilab’s 270 kW neutrino beam. Of particular interest are the cross sections 
for charged current quasi-elastic (CCQE) neutrino scattering. 

After testing on the surface the ArgoNeuT detector was installed in the NuMI Near Hall, 100 m 
below ground, and by the end of the run it had become sandwiched, as shown in figure 2, between the 
MINERVA and MINOS detectors. The MINOS detector provides momentum and charge sign 
measurements for energetic forward muons in ArgoNeuT events. Readout was triggered at the beam 
spill rate (0.5 Hz), thus recording all neutrino interactions in the active region of the detector. 

In April 2009 the cryostat was sealed, pumped down and then filled with liquid Argon. A 
measurement of the statistical noise on the wires yielded an RMS of 1.4 ADC counts with negligible 
coherent noise. In pure Argon, 4 mm of track length for a minimum ionizing particle should have a 
mean signal amplitude of ~ 35 ADC counts in the Collection plane and ~ 17 ADC counts in the 
Induction plane. Thus a signal to noise of at least 10 to 1 was expected. However, during the Spring 

2009 running, the electron lifetime was not long enough to approach this level of signal to noise over 
most of the drift region. Nevertheless, a number of clear neutrino interactions were identified and 
presented at conferences and meetings [6]. These interaction displays could appear in rather 
unexpected places, such as on Fermilab’s 2009 Season’s Greetings card, as shown in figure 3. Though 
not currently being analyzed, some of this early data may become useful in the future.  

During the accelerator shutdown in summer 2009, the electron lifetime was improved, reaching 
~ 750 µs as measured in an analysis to be described later but it was not possible to open the cryostat to 
address the electronics issues to be discussed later. In the subsequent running, except for a 2½-week 
period in October with a cryogenics problem, the experiment acquired data for 1.5 × 1019  protons on 
target (POT) in the neutrino mode and 1.2 × 1020  POT in the anti-neutrino mode, as shown in Figure 
4. This running should yield in the fiducial volume of the TPC approximately 900 ν Charged Current 
(CC) interactions in the NuMI neutrino-beam configuration, and 4000 ν and 3500 ν  CC interactions 
in the antineutrino-beam configuration. 

 
Figure 3. Snowflake comprised of tracks 
from an ArgoNeuT event display, below. 
 

 
 

 

 
 
Figure 4. ArgoNeuT beam usage starting in the Fall of 
2009. The beam was changed to anti-neutrinos in late 
Sept, and the majority of the data is in that mode. 

 



 
 
 
 
 
 

2.  Electronics and raw data  
The analog readout electronics built specifically for the ArgoNeuT detector included a dual jFET 
front-end integrating preamplifier followed by high- and low-pass filters, implemented on 16-channel 

cards, as shown in figure 5. These were mounted in a double-walled RF-shield cage enclosing the 
cards and the signal feed-through. Existing ADF2 32-channel digitizers [7] were borrowed from 
spares of the D0 experiment. With the limited number of available digitizer channels (480), 4 mm was 
chosen for both pitch and plane separation of the three TPC wire planes, Shield, Induction, and 
Collection, with the wire angles, 0°(vertical), and ±30°, respectively. Only the latter two planes were 
instrumented, each with 240 channels of readout. The signal on each wire was digitized at a 5 MHz 
rate for a total of 406 µs beginning 10 µs before the start of a 10 µs long NuMI beam spill. It takes 
~310 µs to drift the 470 mm distance between the Cathode and Grid wire planes, in the 500 V/cm 
electric field established between them. 

After pulse shaping, the signal for an ionizing track has a rise time of at least a few microseconds, 
but the capacitive coupling of the digitizer inputs, which could not be modified, were designed for 
signals ~100 times shorter. In addition, a series resistor compensating for gain differences between 
ADF2 channels modulated the effects of this capacitive coupling. For the combined shaping circuit 
and digitizer input, the step-function response, as shown in figure 6, had a peaking time of ~ 3.5 µs 
with a negative baseline shift of 7-10% of the signal amplitude with a decay constant of 50–100 µs.  

There were a number of unique features of the electronics implementation for this LArTPC. Bias 
voltages were distributed via 1 MΩ resistors to each wire (Shield at -298 V, Induction at -18 V, 
Collection at +338 V) and decoupled with capacitors feeding the low-voltage signal cables via TPC 
mounted cards (see figure 1), submerged in the liquid Argon. Through testing in Fermilab’s Materials 
Testing Station [8] we know that these components will not contaminate liquid Argon. 

Without the need to carry a bias voltage, the cables and a new feedthrough could use mass-
terminated connectors. We were disappointed to later find that the feedthrough had a number of flaws 
that caused ~5 dead or noisy channels, which could not be repaired. Also, there were no signals from 5 
sequential wires in the Collection plane resulting in event displays that exhibit a noticeable gap in 
tracks crossing this region. The wires neighboring this region collect more charge than expected, 
indicating that these dead Collection plane wires did not receive bias voltage. No signal shape 
distortions were seen for the corresponding ionization in the Induction plane. Finally, the bias voltage 

 
 

Figure 5. 16-channel preamplifier card 
with dual jFET front-end, pulse 
shaping high-pass and low-pass filters, 
and a cable driver. 

 
 
Figure 6. Response of the combined filter and 
digitizing electronics to a step-function signal at 
the integrator (a delta function signal on the wire) 



 
 
 
 
 
 

cards had small un-insulated spots on traces where charge could be collected from outside the active 
TPC volume. This could generate, primarily on the last 48 wires of the Induction plane (right hand 
corner in displays), a strange signal with the wrong polarity. Though distracting, these signals are rare 
in events of interest, and are not present in the other view and thus do not reconstruct in 3D. 

After the summer shutdown, coherent noise became more noticeable and reached a peak of about 
1.0 ADC counts. As the data to be presented below will clearly indicate, none of the problem areas 
described here are serious enough to prevent ArgoNeuT from achieving its physics goals 

3.  Constructing hits 
On each wire, track signals are separated from noise by application of a hit threshold. In the raw data, 
the negative portion of a bipolar signal in the Induction plane or the negative baseline shift of a signal 
in the Collection plane can cause the positive portion of a subsequent signal to drop below a hit 
threshold. To insure that a hit threshold is uniformly efficient, a Fast Fourier Transform (FFT) 
deconvolution was employed to minimize these effects. The deconvolution removes the baseline shift 
from the Collection plane signals and converts the raw signals in the Induction plane from bipolar to 
unipolar. Also, some improvement in the signal to noise ratio in the Induction plane can be obtained 
with this procedure. 

This FFT deconvolution technique makes the assumption that every true signal on a particular wire 
can be resolved into components that to first order have the same base signal shape in time. Ionization 
electrons follow different paths as they drift through the wire planes, contributing different shapes to 
the overall signal. The quality of the deconvolution, therefore, depends on the details of the signal 
formation, which are different in the two readout planes. The majority of the signal on a Collection 
plane wire is due to ionization from a projected track length equal to the wire pitch, centered on the 
wire, and generated rather close to the wire. 
Therefore, the invariance of the component shapes 
contributing to Collection plane signals is a 
particularly good approximation.  

Signals on Induction plane wires, however, 
contain significant components from ionization 
that will be closer to a neighboring wire when 
passing through the plane. That distant charge will 
make contributions to the signal with a shape 
different from that of charge passing closer to the 
wire. These shape differences (the utility of which 
is minimized by ionization fluctuations) are 
washed out by the frequency response of the 
electronic shaping circuits that favor better signal 
to noise. The variations in the shape of the 
digitized Induction plane bipolar signals are not 
large. For example, the ratio of the positive to 
negative amplitude of the bipolar signal generated 
by isolated tracks rarely varies by more than ±15% from the base signal shape. These variations can 
generate deconvolution artifacts, however, they are small enough that a common signal shape is an 
adequate first approximation for hit finding. A better approximation to the signal shape is possible, 
once the angles, ionization, and density of the tracks are known.  

The base signal shapes for the Collection plane and Induction plane wires, as shown in figure 7, 
were derived from thousands of spills containing a long muon track nearly parallel to the wire planes. 
Track segments with signals with a wider pulse than expected, indicating the presence of a delta ray, 
were not included in the signal shape determination. As a side benefit of using muon tracks for the 
signal shape on each wire, the deconvolution can be adjusted to result in signal amplitudes on each 

 
Figure 7. Base signal shapes for the 
Collection and Induction planes as determined 
from muon tracks parallel to the wire planes. 



 
 
 
 
 
 

wire normalized to a common ionization scale. These muon track signals should have the shortest rise 
time of any ionization deposition by a track.  

Another aspect of the FFT technique used here is the frequency filter. The filter used in the 
Collection plane was based on the power spectrum of the base signal. Due to the slowly varying 
baseline shift, this filter must accept low frequencies. In the Induction plane, baseline variations are 
quite small so that a filter with a low frequency cut-off could be used. 

A few examples will illustrate the capabilities of the signal deconvolution procedure. To 
demonstrate the effects of the signal deconvolution in the Collection plane, the vertex region of a 2-
prong neutrino interaction is analyzed in detail, as shown in figure 8. The signal peak #3, likely due to 
a photon conversion, has ionization ~ 4 times the minimum and the raw data has depressed the 
baseline, lowering the pulse heights of hits 4-5 and 6. The deconvolution has restored the baseline, 
raising the pulse heights of peaks 4-5 to a level consistent with minimum ionizing tracks, and hit 6 is 

now above the hit threshold. In the same event the upper track scatters backward and stops in the 
active volume, as shown in the upper-left panel of figure 9. Also shown are wire displays for three 
consecutive Induction plane wires, illustrating that the deconvolution procedure has extracted the 
signal of the incoming track from the negative portion of the raw bipolar signal of the scattered track.  

        
 

Figure 8. Collection plane signals are shown in the vertex region of a two-prong neutrino 
interaction. The raw data display (left panel) exhibits pulse heights far below the baseline 
(dark blue). Signals on wire 83 (center panel) before and after (black/red) the deconvolution, 
and the display (right panel) following deconvolution, wire 83 indicated by the vertical line. 
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Figure 9. Deconvoluted Induction plane view of a scattered track (upper-left). Also shown are 
the wire views on three consecutive wires (168–170) with the raw data in black and 
deconvoluted signals in red. Note: Induction plane pulse heights are typically ½ those of the 
Collection plane.  



 
 
 
 
 
 

4.  Cluster and track finding 
The hit finding described above and the description of the 2D and 3D reconstruction that follows 

have their software codes packaged in LArSoft [9], a Fermilab supported framework for the LArTPC 
activities in the US. Once hits are found in the 2D projections, they are grouped in each view into 
“clusters” using a DBSCAN [10] algorithm. A Hough Transform [11] algorithm applied to the hits 
within a cluster find those hits that lay along straight-line tracks. The minimum number of missing hits 
and allowed deviation of a hit from the track are adjustable parameters, initially set at values 
optimized for efficiency. Both wire planes cover the active volume of the TPC completely, thus a 
track identified in the one view that enters or leaves the TPC active volume will have a corresponding 
endpoint with a common drift coordinate in the other view. This provides nearly unambiguous 
matching of the tracks in the two views. Through-going tracks entering on one boundary and leaving 
through another have two such corresponding endpoints in 3D. 

A neutrino interactions in the material outside the active TPC volume generate all species of 
particle, however, nearly all of those that enter and then leave the active region of the TPC are muons. 

As a first quality check on the reconstruction, about 60,000 beam spills were used to identify a large 
sample of straight tracks where both endpoints could be reconstructed in 3D. The endpoints should 
mark the boundaries of the active volume, as shown in figure 10. In the frame labelled Top View, 
many tracks enter the front (upstream) face or leave the back (downstream) face, at Z = ±45 cm of the 
TPC. Also, the endpoints show that there are tracks that leave or enter through the Cathode or wire 
planes at X = ±23.5 cm. Unexpectedly, the boundaries of the front and back surfaces of the TPC look 
further apart near the wire planes than they do near the Cathode (longest drifts). However, a map of 
the electric field reveals that some field lines at the edges of the cathode do not end on the wire planes. 

 
Figure 10. Reconstructed endpoints for muon tracks that enter and leave the TPC 
active volume, upstream points plotted in black, and downstream points in red. Field 
distortions (see text) are responsible for the inward tilt for the front and back.  

 
Figure 12. The 2-prong neutrino event 
shown earlier is displayed with the tracks 
reconstructed in 3D.  

 
Figure 11. Muon tracks reconstructed in 
3D by matching all 2D hits between views, 
and superimposing tracks from many spills. 



 
 
 
 
 
 

A region about 1 cm inboard from the field-cage is therefore inactive, except close to the wire planes 
where field lines from the two nearest field-cage electrodes can carry charge to the wires.  

The points that lie well within the boundaries of the TPC in the Top View must enter or leave 
though its top or bottom. This is confirmed in the plot labelled Beam View, where there are 
concentrations of endpoints on the top and bottom of the TPC. A few reconstructed endpoints appear 
to lie just outside the top surface of the TPC at Y = + 19.5 cm. The y-coordinate is the least well 
known of the three coordinates. For endpoints off by 1-2 wires in the two views the y-coordinate can 
reconstruct up to 16 mm from the true endpoint, consistent with the deviations of those few tracks 
from the nominal top boundary. 

Another approach to 3D reconstruction matches all hits between the two views based on a common 
drift time. The algorithm works particularly well on isolated tracks such as muons, as shown in Figure 
11. Low multiplicity neutrino interactions, such as the two-prong event described earlier in Section 3, 
are reconstructed with the same algorithm in 3D, as shown in figure 12. Work continues to develop 
code that will reconstruct tracks in nearly all events in 3D. 

5.  Electron lifetime from muon tracks.  
Using the straight track reconstruction algorithms described above, a selection of minimum 

ionizing muon tracks at least 40 cm long from ~70,000 beam spills (~ 2 days of running) enabled a 
measurement of the electron lifetime in the liquid Argon. The deconvolution algorithm yielded an 

ionization measurement of every hit, normalized in ADC counts to an average of the signal pulse 
heights in each plane. A plot of the ionization of each hit vs. its drift time, as shown in figure 13, at a 
fixed drift time exhibits the expected Landau (like) distribution, albeit with smearing induced by 
instrumental effects and muon track variations in momentum and angle, however, these effects do not 
vary significantly over the full drift time.  

 
Figure 13. From a single run, the pulse height spectra vs. drift time for tracks reconstructed in 
the Collection view with at least 120 hits. Electron lifetime effects on the most probable pulse 
height are clearly demonstrated. 
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The pulse height spectra in 1.6 µs time slices were selected and excellent fits to a Landau plus a 
Gaussian-smearing distribution were obtained. From these fits in the Collection plane, excluding drift 
times near the wire planes or the Cathode, the most probable pulse height plotted vs. drift time, as 

shown in Figure 14, exhibits the expected exponential fall with a fitted lifetime of 757 ± 3 µs 
(statistical error). In the Induction plane a fit yields a similar value when hits affected by a threshold 
cut are eliminated. The rather poor fit chi-squared, 436 for 186 degrees of freedom, suggests that the 
fitted mean pulse heights have additional variations not included in the error from the fit in the most 
probable pulse height from each time slice. One possible source is coherent noise correlated with the 
common start for the beam spill and the drift time clock. 
 

6.  Identification of neutrino interactions 
With the muon track 3D reconstruction as described above, a filter removed spills that did not show 
data consistent with a neutrino interaction. Spills were eliminated if they showed no tracks or just a 
single straight muon track that enters and leaves the fiducial volume. After removing the ionization of 
any single muon track, spills were retained for later scanning with more than the ionization equivalent 
of a 40 MeV energy deposition. During nominal neutrino beam conditions, the filter selects ~3% of 
the original beam spills. Applying additional cuts in a visual scan, about 25% of these spill records, or 
less than 0.7% of the original sample, were identified as having a candidate neutrino interaction, and 
about half of these have unmistakable neutrino interactions with more than 1 charged track at an 
interaction vertex. The additional cuts applied in the visual scan address cases where there are multiple 
tracks, most which intersect the front or sidewalls of the TPC, and likely originate outside the TPC. 
Many of the criteria applied in the visual scan can be coded to reduce the scanning load while others 
would require more sophisticated reconstruction algorithms to maintain the efficiency in the neutrino 
event selection. These will be implemented in the near future. 

 
Figure 14. The plotted points are from fits to the most probable pulse height in 1.6 µs slices 
from the previous figure. The exponential fit for the electron lifetime was restricted to the central 
time samples where the pulse heights are unaffected by the hit threshold or other instrumental 
effects. The Slope parameter is the inverse of the lifetime (in time-samples). 
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The discovery of CP violation in electron neutrino appearance experiments will require the 
excellent pattern recognition and particle identification capabilities of the LArTPC technology. With 
the ArgoNeuT data we hope to make the first measurement of the electron neutrino content of the 
NuMI beam in the neutrino and anti-neutrino modes. Over the course of the run, random visual scans 
identified 1 or 2 events that could be electron neutrino interactions, but they were not definitive. In the 
visual scan of about 450 of spill records selected by the filter from ~15,000 beam spills (about 12 
hours of neutrino beam running) an event was found that displayed all the expected characteristics of a 
charged-current quasi-elastic interaction of an electron neutrino.  

The event in the Collection plane, as shown in figure 15, has a two-prong vertex with one 
minimum ionizing track about 11 cm long (gap is due to 5 consecutive dead wires) that develops into 
a collinear electromagnetic shower, thus is likely an electron, and a short highly ionizing track that 
stops in the Argon. The stopping track, more easily seen in the Induction plane (inset), is about 5 cm 
long and is likely a proton with a kinetic energy of about 85 MeV. Also, the event exhibits no other 
electromagnetic activity that could be associated with an additional photon of significant energy, e.g., 
from π0 or η decays. We continue to scan for additional electron neutrino events. Analysis of the 
ionization will provide a measurement of the electromagnetic shower energy deposited in the active 
volume and verification that the stopping track is a proton.  

7.  Conclusion 
The ArgoNeuT collaboration has constructed a 175-liter Liquid Argon TPC, readout by 

60°-stereo wire planes, each with 240 wires on a 4-mm pitch. The electronics exhibited an average 
statistical noise of 1.4 ADC counts with minimum ionizing tracks producing at the midpoint of the 
drift distance a mean signal amplitude per 4 mm of track length of 31.5 ADC counts in the Collection 
plane, and 15.5 ADC counts in the Induction plane.  

The experiment recently completed a 6-month run at Fermilab in the NuMI beamline in a low-
energy configuration providing neutrinos with a mean energy of 3.5 GeV. This run should yield within 
the fiducial volume ~ 900 ν Charged Current (CC) events in the neutrino beam mode, and ~ 4000 ν 
and ~ 3500 ν  CC events in the antineutrino beam mode. Work is in progress to obtain the momentum 
and sign of most muons by linking tracks in the LArTPC with the MINOS near detector. The energy 
determination for electromagnetic showers will be investigated through reconstruction of π0 decays. 
Events have been seen with the characteristics of 

� 

ve  scattering indicating that measurement of the 

� 

ve 
fraction in the NuMI beam at the ~ 1% level should be possible. 

 
Figure 15. A candidate for an electron neutrino CCQE event shown in the ArgoNeuT Collection 
plane with one short and heavily ionizing track, and a minimum ionizing track about ~ 11 cm long 
(big gap is due to 5 dead wires) that develops into an electromagnetic shower. In the Induction plane 
(inset), the short (~ 5 cm) stopping track and an uninterrupted minimum ionizing track are clear. 
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